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A Test of Computer Simulation of 
Low Density Gases 
J. RAMt, R.  BARKER$,  P. T. CUMMINGSO, and P. A. EGELSTAFF 

Physics Department, University of Guelph, Guelph, Ontario, Canada MIG2 Wl 

(Received October 27,1981) 

In order to study the pair and three body forces in noble gases it is important to understand the 
behaviour of the virial series for g ( r )  and to have reliable computer simulations of states at low 
densities. Questions have arisen as to the accuracy of such calculations and in this paper we 
present new work on this problem for densities near 1 x 10’’ atoms/m3. 

introduction 

The computer simulation has been used widely to study model fluids.’ In a 
canonical NVT ensemble with a small number ( N )  of particles, gN(r )  will 
differ from its value for N -, m. For the limiting case of two particles far 
apart Lebowitz and Percus2 have given a correction for finite N, but when 
the two particles are close together the size of this correction is unknown. 

In addition, for low density gases3 the mean-free path (m.f.p.) of a particle 
may be only a few times smaller than the side, L, of a box containing (say) 
500 particles. For example, in the case of hard spheres the mean-free path is 
is related to diameter d by m.f.p. = d { J 2  np*} - ’ ,  where p* = density x d3 .  
As an estimate for krypton we set d = the position of the minimum in the 
pair potential (r,,,), and data for the range of densities used here are given in 
Table I. The average number of m.f.p. us about 6, and as the density is reduced 
a particle may be expected to pass through the box side after a decreasing 
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316 J. RAM et al. 

TABLE I 

Mean-free paths (mfp) and cubical box side (L) 
as a function of density 

p* mfplr, L/r, Ratio (Llmpt) 

0.09007 2.49 17.71 7.1 
0.08364 2.69 18.15 6.7 
0.07720 2.91 18.64 6.4 
0.06434 3.49 19.81 5.1 
0.05147 4.37 21.34 4.9 

number of collisions. To consider a box where L % m.f.p. we make use of 
periodic boundary conditions and the effect of this on g(r) is not clear. It is 
one of our objectives to see whether a small ratio, L/m.f.p., leads to significant 
errors. 

At low densities g(r) may be calculated from the virial expansion4 and it is 
therefore of interest to compare these and other calculations with Monte 
Carlo results to try to estimate the size of the above errors. To illustrate our 
problem we show in Figure 1 an example of g(r) calculated by the Monte 
Carlo method (crosses) compared to the expected result for p -+ 0 (line). 
The precision with which the small differences between these two results 
may be calculated will be investigated in this paper. The study of these 
small terms is important in the interpretation of experimental data on g(r) 
of the kind presented by Teitsma and Egelstaff who used the virial series 
and Monte Carlo results to interpret their data. 

Virial expansion compared to the Percus-Yevick approximation 

The virial expansion for g(r )  in a system of particles interacting with a pair 
potential, u(r) is: 

wheref(r) = [e-Bu(r) - 11 is the Mayer function and f i  is (kB T ) -  '. The first 
two terms of this series were calculated using the computer programme 
VIREXPP; a description of this programme is given in Appendix A. We 
shall write the virial series in the form: 

which defines g,(r) and y,(r). If we consider this series cut off at m = 1, we 
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r *(l. 0=4. 0067 A ) 

FIGURE 1 Radial distribution function for the Barker eta/.’ krypton potentials at T = 297 K 
and p = 0.9 x lo2’ atoms/m” Crosses are Monte Carlo results and the full line is the function 
expC - BWl. 

may rewrite Eq. (2) as: 

which defines yl(r). Our results are presented in this form in order to amplify 
the differences between various calculations of g(r).  We expect that for low 
enough densities Eq. (2) may be terminated at m = 1 without significant 
error: in this work we (arbitrarily) set a significance level at 0.2 %. In order 
to estimate the density at which the correction to g(r)  is less than 0.2% we 
compare our truncated virial data with a calculation using the Percus-Yevick 
approximation (P.Y.); and we show that the density range considered in 
this paper meets this condition. It is assumed here that the quantity: 

{ & m Y n ( 3 ]  P.Y. 

is nearly equal to the exact value of this sum. This assumption is discussed 
in Appendix B. 
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318 J. RAM et al. 

The P.Y. integral equation i.e.: 

was solved by an iterative procedure using a grid size of 0.02 r ,  and an initial 
estimate y = 1. Convergence was enhanced by writing6 

y{;+’) = (1 - fX)y?$ + ccy~u;’’ ( 5 )  

where yt)  and y?it are the nth input and output respectively and c1 is a mixing 
parameter. The iteration was terminated when 

I y ( n + 1 )  - ynl IO.001 

For the Barker et a1.’ krypton potential we show in Figure 2 the resulting 
g(r)  in the form of y l ( r )  (full line) at the largest density used here ( p  = 1.3 
x lo2’ atoms/m3 and T = 297 K). For comparison, virial results (truncated 
at m = 1) are plotted as the dashed line. We see that the two results agree to 
less than 0.2% of the pair correlation function g(r),  so confirming that the 
virial expansion is accurate for densities equal to or less than this value. 

mL 
“ E i  

Ei[ 
t I 

. ~- =-I 
-1 

0. 5 1.0 1.5 2. 0 2. 5 3. 0 3. 5 
r “(1. 0=4. 0067 A ) 

FIGURE 2 yl(r) from Eq. (3) for p = 1.3 x lo2’ atoms m3 and other parameters as in 
Figure 1 .  Full line-P-Y result; dashed line-virial series for q ( r )  cut at m = 1. 
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COMPUTER SIMULATION OF GASES 319 

Virial expansion compared to Monte Carlo results 

The Monte Carlo calculations using the pair potential were carried out with 
a 500-particle system located in a cubical box. An NVT ensemble1 and perio- 
dic boundary conditions were used. Five states having densities between 0.8 
and 1.4 x loz7 atoms m-3 and a temperature of 297 K were simulated 
using the pair potentials of Barker et al.’ for krypton (K2) and runs of 500,OOO 
configurations. Each simulation began with the particles being placed 
randomly with no overlap within the cubical box, and the first 25,000 con- 
figurations were used to equilibrate the system. To monitor the calculation 
for bottlenecks and an insufficient number of equilibriating configurations, 
the configurational energy and the mean squared displacement were ex- 
aimed every 5000 configurations. After 500,000 configurations, estimates 
of the average configuration energy and its uncertainty were obtained and 
compared with the energy obtained from the integral p/2 1 g(r)u(r) dr. The 
calculation was terminated when two methods gave agreement of (typic- 
ally) less than 1 percent. 

- 

3. 0 
i 

3. 5 
r *(1. 0=4. 0067 A ) 

FIGURE 3 yl(r) from Eq. 3 for p = 1.3 x lo2’ atoms/m3 and other parameters as in Figure 1. 
Dashed line-virial series for g(r) cut at m = 1;  full line shows dashed line plus 1/N correction; 
crosses-our Monte Carlo results. 
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I I I 

0. 5 1.0 1. 5 2. 0 2. 5 3. 0 3. 5 
r- *C1. 0=4. 0067 %\ ) 

FIGURE 4 Same as in Figure 3 but for p = 0.9 x 10'' atoms/m3. 

Since the densities are about a factor of ten less than the usual liquid 
densities, the maximum allowed translation had to be increased to about 3 
(in units of Y,) to produce a reasonable number of accepted moves. At such 
low densities the box is mostly empty and to probe the pair potential much 
larger translations must be allowed. The algorithm in the computer pro- 
gramme that adjusts the maximum allowable translation to produce 50 
percent acceptance of the attempted moves worked inefficiently at low 
densities. For these simulations the ratio of the number of accepted to 
attempted moves was 0.6 to 0.7. 

We found it worthwhile to average the runs at p = 0.8 and 1.0 x loz7 
atoms/m3 to improve the statistics and this g ( r )  was shown in Figure 1. 
For the same reason we averaged the runs at p = 1.2, 1.3 and 1.4 to give a 
mean at p = 1.3 x loz7 atoms/m3. To make a precise comparison we present 
data for yl(r) in Figures 3 and 4. In these figures the crosses are Monte 
Carlo data and the dashed line shows the result obtained from Eq. (3) using 
the virial g(r) .  The analogous quantity for a finite number of particles 
( N  = 500) is shown by the full line, for which g(r)  in Eq. (3) has been is 
replaced3 by b ( r )  - pkTx, /N]  where X ,  is the isothermal compressibility. 
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COMPUTER SIMULATION OF GASES 32 1 

The value of the compressibility was taken from the virial series. In general 
there is a discrepancy of the order of 0.2% of g(r )  except where the atoms 
overlap. The P.Y. result of Figure 2 may be in slightly better agreement with 
the M.C. data than the virial result. 

Conclusion 

The 1/N correction term to g(r)  describes the difference between Monte 
Carlo and virial results for r/rm > 1.5 and p 5 1.3 x lo2’ atoms/m3 with 
room temperature krypton. However for r / r ,  - 1.4 a discrepancy is seen 
in both curves which decreases y l ( r )  by about 16 %. For a density of 1 x lo2’ 
atoms/m3 this corresponds to about 0.3 % of g(r) .  For small r < rm a larger 
discrepancy is seen in Figure 3 which might be due to the small box size, but 
further calculations using larger boxes are required to test this conclusion. 

We conclude that the interpretation of experimental data through the 
virial series is reasonably reliable for these densities, and that Monte Carlo 
calculations at densities of - 1 x 10’’ atoms/m3 are reliable also. 
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322 J. RAM et ul. 

Appendix A 

VlRlAL COEFFICIENT CALCULATIONS 

The virial expansion calculations reported in this paper were performed 
using a programme developed by one of the authors (PTC) building, in part, 
upon subroutines provided by M. S. Wertheim (unpublished). 

The direct correlation function, c(r), introduced by Ornstein and Zernike, l 2  

is related to the structure factor S(q)  in q-space via the relation 

where c(q) is the Fourier transform of c(r) ,  and has the following virial 
expansion 

C ( q )  = -2B(q, T )  - P[3Cl(q, T )  + 3c,(q, T ) ]  

The integrals B(q, T ) ,  C,(q,  T )  and C,(q, T )  are given by 

B(q, t )  = - - e i q " f ( r )  dr 
2 ' S  

1 C n  

wheref'is the Mayerf-function and u3 is the three-body potential. Clearly C, is 
the contribution to the third virial coefficient from the three-body potential. 

There is a closely related virial expansion for g(r), given in Eq. (2), where 
the first two terms are given by 

Y&) = 1; Yl(Y) = YlA(T) + YlNA(Y), (A.6-7) 

with Y l A ,  Y ~ N A  given by 

J J l N  = J f ( M  I r - s I )  ds (A.8) 

ylNA(r) = J[f(s) + l][f(lr - sl) + 1][e-U3'r,".I'-"l)'kET - 13 ds (A.9) 

This expansion can be easily verified by the reader by noting that 

S(q)  = 1 + pNq) (A.lO) 
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COMPUTER SIMULATION OF GASES 323 

where h(q) is the Fourier transform of h(r) = g(r)  - 1; combining Eqs. 
(A.l), (A.2) and ( 2 )  yields Eqs. (A.6) to (A.9). The function yl(r) is broken up 
into an additive part, ylA(r), due solely to two-body forces, and y ,  NA(r), the 
contribution to y , ( r )  from the three-body potential. 

The program VIREXPP calculates B(q, t), C,(q, T) ,  C2(q, T) ,  ylA(r) and 
yINA(r ) ,  on a user-specified grid of points by writing the integrals in bipolar 
co-ordinates and using trapezoidal rule quadrature to perform the required 
numerical integrations. For the users choice off(r), the program dynamically 
assigns the parameters rlow and r,,, defined as follows: 

0 < r < rlOw 

f(r) = , - W / b T  - 1 r low < r < rmax ( A . l l )  I' - C,/r6 r ' rmax 

The parameter c6 is the coefficient of l/r6 in the interaction potential 
u(r )  and C,/r6 is thus the leading term in the large-r behaviour of u(r) and 
f ( r ) .  The parameter rlOw is defined by locating the point at which -u(r)/kB 
becomes too negative for e-'(r)ikBT to be defined numerically. The parameter 
rmax has been determined empirically by requiring that the calculated results 
be independent of rmax. In calculating B(q, T),  a series expansion is used to 
calculate that part of the integral in Eq. (A.3) over the range t > r,,,. In- 
tegrals in Eq. (A.4) and (A.5) are simply truncated at r,,,. As a time-saving 
device, different values of r,,, and different trapezoidal grid widths are used in 
calculating each of B(q, T), C,(q,  T) and C,(q, T); in the latter case, the 
long-ranged nature of the integral requires a relatively large rmax. 

This program allows the user to select from a range of model potentials 
(such as those of Barker et a1.,'9' Aziz and co -~orke r s , ' ~ . ' ~  and the Axilrod- 
Teller triple-dipole three-body potentials).16 For the results presented in this 
paper, only ylA(r) and g,(r) = e-"'r'ikBTy,(r), n = 0,1, for one model potential 
are required. Results obtained using the other capabilities of VIREXPP have 
been reported elsewhere.' ' 

Appendix 6 

PRECISION OF THE P.Y. APPROXIMATION AT LOW DENSITIES 

We have used results obtained in the P.Y. approximation as essentially exact 
results at low densities. For terms O(p2) in g(r )  there could be small correc- 
tions at contact and at two or three atomic diameters. In the former case we 
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324 J. RAM ef al. 

tested for the size of these corrections by comparing P.Y. results for the hard 
sphere fluid with the semi-empirical formula of Verlet and Wekg The agree- 
ment was found to be much better than our significance level because the 
Verlet-Weis correction is very small at our low densities. The Verlet-Weis 
results are also in excellent agreement with the recent Monte Carlo hard 
sphere simulation data" at the lowest density given (pd3 = 0.3). This com- 
parison is shown in Figure 5. The agreement in this figure is better than in any 
of our other figures. Thus the correction at contact is unimportant, and we 
assume that this implies that the contribution from the diagrams omitted 
in the P.Y. expansion in the case of a real potential is unimportant. 

If this is so we would expect the virial results' for hard spheres of diameter 
d to show differences from the Verlet-Weiss results of about the same size 
as those illustrated for a real potential in Figure 2. Such a comparison for 
pd3 = 0.09007 is given in Figure 6, with results as expected. 

FIGURE 5 yl(r) for hard sphere Monte Carlo data" and the Verlet-Weis formulag for 
pd3 = 0.30. VW-full line; MC-dashed line. 
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Ln 
I 1 

. 0  

FIGURE 6 yl(r) for hard spheres at pd3 = 0.09007. The full line is calculated from the virial 
expansion for g ( r )  cut at m = 1, and the dashed line is the Verlet-Weisg result. 
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